2 1 Ju n 20 05 K 3 surfaces with Picard number one and infinitely many rational points Ronald

نویسنده

  • Ronald van Luijk
چکیده

In general, not much is known about the arithmetic of K3 surfaces. Once the geometric Picard number, which is the rank of the Neron-Séveri group over an algebraic closure of the base field, is high enough, more structure is known and more can be said. However, until recently not a single K3 surface was known to have geometric Picard number one. We give explicit examples of such surfaces over the rational numbers. This solves an old problem that has been attributed to Mumford. The examples we give also contain infinitely many rational points, thereby answering a question of Swinnerton-Dyer and Poonen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A G ] 2 4 Ju n 20 05 K 3 surfaces with Picard number one and infinitely many rational points Ronald

In general, not much is known about the arithmetic of K3 surfaces. Once the geometric Picard number, which is the rank of the Néron-Severi group over an algebraic closure of the base field, is high enough, more structure is known and more can be said. However, until recently not a single K3 surface was known to have geometric Picard number one. We give explicit examples of such surfaces over th...

متن کامل

K3 surfaces over number fields with geometric Picard number one

A long-standing question in the theory of rational points of algebraic surfaces is whether a K3 surface X over a number field K acquires a Zariski-dense set of L-rational points over some finite extension L/K. In this case, we say X has potential density of rational points. In case XC has Picard rank greater than 1, Bogomolov and Tschinkel [2] have shown in many cases that X has potential densi...

متن کامل

0 Ju n 20 05 Resolutions of ideals of six fat points in P 2

The graded Betti numbers of the minimal free resolution (and also therefore the Hilbert function) of the ideal of a fat point subscheme Z of P are determined whenever Z is supported at any 6 or fewer distinct points. We also handle a broad range of cases in which the points can be infinitely near, related to the classification of normal cubic surfaces. All results hold over an arbitrary algebra...

متن کامل

1 6 Ju n 20 06 QUADRATIC TWISTS OF PAIRS OF ELLIPTIC CURVES

Given two elliptic curves defined over a number field K, not both with j-invariant zero, we show that there are infinitely many D ∈ K × with pairwise distinct image in K × /K × 2 , such that the quadratic twist of both curves by D have positive Mordell-Weil rank. The proof depends on relating the values of pairs of cubic polynomials to rational points on another elliptic curve, and on a fiber p...

متن کامل

On the Diophantine Equation x^6+ky^3=z^6+kw^3

Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005